منابع مشابه
A Note on Locally Inverse Semigroup Algebras
Let R be a commutative ring and S a finite locally inverse semigroup. It is proved that the semigroup algebra R S is isomorphic to the direct product of Munn algebras M R GJ , mJ , nJ ;PJ with J ∈ S/J, where mJ is the number of R-classes in J , nJ the number of L-classes in J , and GJ a maximum subgroup of J . As applications, we obtain the sufficient and necessary conditions for the semigroup ...
متن کاملFiat categorification of the symmetric inverse semigroup and the semigroup
Starting from the symmetric group Sn , we construct two fiat 2-categories. One of them can be viewed as the fiat “extension” of the natural 2-category associated with the symmetric inverse semigroup (considered as an ordered semigroup with respect to the natural order). This 2-category provides a fiat categorification for the integral semigroup algebra of the symmetric inverse semigroup. The ot...
متن کاملTOPOLOGICALLY STATIONARY LOCALLY COMPACT SEMIGROUP AND AMENABILITY
In this paper, we investigate the concept of topological stationary for locally compact semigroups. In [4], T. Mitchell proved that a semigroup S is right stationary if and only if m(S) has a left Invariant mean. In this case, the set of values ?(f) where ? runs over all left invariant means on m(S) coincides with the set of constants in the weak* closed convex hull of right translates of f. Th...
متن کاملArens regularity of inverse semigroup algebras
We present a characterization of Arens regular semigroup algebras $ell^1(S)$, for a large class of semigroups. Mainly, we show that if the set of idempotents of an inverse semigroup $S$ is finite, then $ell^1(S)$ is Arens regular if and only if $S$ is finite.
متن کاملModule cohomology group of inverse semigroup algebras
Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1995
ISSN: 0021-8693
DOI: 10.1006/jabr.1995.1367